The construction of space-like surfaces with $k_{1} k_{2}-m\left(k_{1}+k_{2}\right)=1$ in Minkowski three-space

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 356049
(http://iopscience.iop.org/0305-4470/35/29/308)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.107
The article was downloaded on 02/06/2010 at 10:15

Please note that terms and conditions apply.

The construction of space-like surfaces with $k_{1} k_{2}-m\left(k_{1}+k_{2}\right)=1$ in Minkowski three-space

Xi-Fang Cao
Department of Mathematics, Yangzhou University, Yangzhou 225002, People's Republic of China

Received 18 December 2001, in final form 20 March 2002
Published 12 July 2002
Online at stacks.iop.org/JPhysA/35/6049

Abstract

From solutions of the sinh-Laplace equation, we construct a family of spacelike surfaces with $k_{1} k_{2}-m\left(k_{1}+k_{2}\right)=1$ in Minkowski three-space, where k_{1} and k_{2} are principal curvatures and m is an arbitrary constant.

PACS numbers: $02.40 . \mathrm{Vh}, 02.30 . \mathrm{Ik}$

From the point of view of soliton theory, for a surface in three-dimensional spaces, the GaussWeingarten formulae are a Lax pair of Gauss-Codazzi equations [1]. However, the GaussCodazzi equations have been obtained in [2] and [3] for any Weingarten surfaces, i.e., surfaces for which the principal curvatures k_{1} and k_{2} satisfy a functional relationship $f\left(k_{1}, k_{2}\right)=0$. So, in theory, from a solution of the Gauss-Codazzi equations, by solving the Gauss-Weingarten formulae, one can construct a Weingarten surface whose principal curvatures k_{1} and k_{2} satisfy the given relationship $f\left(k_{1}, k_{2}\right)=0$. But, in practice, for an arbitrary function $f\left(k_{1}, k_{2}\right)=0$, the Gauss-Codazzi equations are nonlinear, and are, in general, difficult to solve. Even if a solution of the Gauss-Codazzi equations is given, one still faces the technical challenge of solving the Gauss-Codazzi formulae. For constant negative curvature space-like surfaces (i.e. $k_{1} k_{2}=1$) in Minkowski three-space M^{3}, the Gauss-Codazzi equation is the sinh-Laplace equation [4]. From solutions of the sinh-Laplace equation, Hu [5] has constructed a family of constant negative curvature space-like surfaces in M^{3}. In this paper, we first point out that for Weingarten space-like surfaces with $k_{1} k_{2}-m\left(k_{1}+k_{2}\right)=1$ (m is an arbitrary constant) in M^{3}, the Gauss-Codazzi equation is still the sinh-Laplace equation. Then, by solving the GaussWeingarten formulae, we construct a family of space-like surfaces with $k_{1} k_{2}-m\left(k_{1}+k_{2}\right)=1$, which are a generalization of surfaces obtained in [5]. We suppose that the surfaces discussed in this paper do not contain any umbilic points.

Let S be a space-like surface with $k_{1} k_{2}-m\left(k_{1}+k_{2}\right)=1$, or equivalently, $\left(k_{1}-m\right)\left(k_{2}-m\right)=l^{2}\left(l^{2}-m^{2}=1\right)$. Let $\left\{r ; e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal Lorentzian frame field on S such that e_{1}, e_{2} are tangent vector fields in the principal directions, and e_{3} is the normal vector field $\left(e_{1}^{2}=e_{2}^{2}=-e_{3}^{2}=1\right)$. Then we have the moving equations

$$
\begin{equation*}
\mathrm{d} r=\omega_{1} e_{1}+\omega_{2} e_{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{d} e_{i}=\sum_{j=1}^{3} \omega_{i j} e_{j} \quad i=1,2,3 \tag{2}
\end{equation*}
$$

where $\omega_{12}=-\omega_{21}, \omega_{13}=\omega_{31}, \omega_{23}=\omega_{32}$.
Suppose the first and second fundamental forms of S are respectively

$$
\mathrm{I}=a^{2} \mathrm{~d} u^{2}+b^{2} \mathrm{~d} v^{2} \quad \mathrm{II}=k_{1} a^{2} \mathrm{~d} u^{2}+k_{2} b^{2} \mathrm{~d} v^{2} \quad(a, b>0)
$$

then we have

$$
\begin{array}{ll}
\omega_{1}=a \mathrm{~d} u \quad \omega_{2}=b \mathrm{~d} v & \omega_{13}=\omega_{31}=-k_{1} a \mathrm{~d} u \\
\omega_{23}=\omega_{32}=-k_{2} b \mathrm{~d} v & \omega_{12}=-\omega_{21}=-\frac{a_{v}}{b} \mathrm{~d} u+\frac{b_{u}}{a} \mathrm{~d} v \tag{3}
\end{array}
$$

and the Codazzi equations

$$
\begin{equation*}
\left(k_{1}-k_{2}\right) a_{v}+k_{1 v} a=0 \quad\left(k_{2}-k_{1}\right) b_{u}+k_{2 u} b=0 . \tag{4}
\end{equation*}
$$

Since $\left(k_{1}-m\right)\left(k_{2}-m\right)=l^{2}\left(l^{2}-m^{2}=1\right)$, we can assume that

$$
\begin{equation*}
k_{1}-m=l \frac{l \sinh \frac{\alpha}{2}-m \cosh \frac{\alpha}{2}}{l \cosh \frac{\alpha}{2}-m \sinh \frac{\alpha}{2}} \quad k_{2}-m=l \frac{l \cosh \frac{\alpha}{2}-m \sinh \frac{\alpha}{2}}{l \sinh \frac{\alpha}{2}-m \cosh \frac{\alpha}{2}} . \tag{5}
\end{equation*}
$$

Then, using the Codazzi equations, we can choose parameters u and v such that

$$
a=l \cosh \frac{\alpha}{2}-m \sinh \frac{\alpha}{2} \quad b=l \sinh \frac{\alpha}{2}-m \cosh \frac{\alpha}{2} .
$$

Hence

$$
\begin{align*}
& \omega_{1}=\left(l \cosh \frac{\alpha}{2}-m \sinh \frac{\alpha}{2}\right) \mathrm{d} u \quad \omega_{2}=\left(l \sinh \frac{\alpha}{2}-m \cosh \frac{\alpha}{2}\right) \mathrm{d} v \\
& \omega_{12}=-\omega_{21}=-\frac{\alpha_{v}}{2} \mathrm{~d} u+\frac{\alpha_{u}}{2} \mathrm{~d} v \tag{6}\\
& \omega_{13}=\omega_{31}=\sinh \frac{\alpha}{2} \mathrm{~d} u \quad \omega_{23}=\omega_{32}=\cosh \frac{\alpha}{2} \mathrm{~d} v .
\end{align*}
$$

From equation (6), equation (2) can be rewritten as

$$
\begin{align*}
& \left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)_{u}=\left(\begin{array}{ccc}
0 & -\frac{1}{2} \alpha_{v} & \sinh \frac{\alpha}{2} \\
\frac{1}{2} \alpha_{v} & 0 & 0 \\
\sinh \frac{\alpha}{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) \tag{7}\\
& \left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)_{v}=\left(\begin{array}{ccc}
0 & \frac{1}{2} \alpha_{u} & 0 \\
-\frac{1}{2} \alpha_{u} & 0 & \cosh \frac{\alpha}{2} \\
0 & \cosh \frac{\alpha}{2} & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) .
\end{align*}
$$

The Gauss equation is the sinh-Laplace equation

$$
\begin{equation*}
\alpha_{u u}+\alpha_{v v}=\sinh \alpha \tag{8}
\end{equation*}
$$

and equation (7) are a Lax pair of equation (8).
The sinh-Laplace equation (8) has the following solutions

$$
\begin{equation*}
\alpha=2 \sinh ^{-1}\left(-\frac{1}{\sinh (\lambda u+\mu v)}\right) \tag{9}
\end{equation*}
$$

where λ and μ are constants and satisfy $\lambda^{2}+\mu^{2}=1, \lambda>0, \lambda u+\mu v<0$. Then

$$
\begin{equation*}
\sinh \frac{\alpha}{2}=-\frac{1}{\sinh (\lambda u+\mu v)} \quad \cosh \frac{\alpha}{2}=-\frac{\cosh (\lambda u+\mu v)}{\sinh (\lambda u+\mu v)} . \tag{10}
\end{equation*}
$$

Now the first part of the Lax pair (7) can be written as
$e_{1 u}=-\mu \sinh \frac{\alpha}{2} e_{2}+\sinh \frac{\alpha}{2} e_{3} \quad e_{2 u}=\mu \sinh \frac{\alpha}{2} e_{1} \quad e_{3 u}=\sinh \frac{\alpha}{2} e_{1}$.
Letting

$$
\begin{equation*}
a=-e_{2}+\mu e_{3} \quad b=\lambda e_{1}-\mu e_{2}+e_{3} \quad c=\lambda e_{1}+\mu e_{2}-e_{3} \tag{12}
\end{equation*}
$$

then equation (11) is equivalent to

$$
\begin{equation*}
a_{u}=0 \quad b_{u}=\lambda \sinh \frac{\alpha}{2} b \quad c_{u}=-\lambda \sinh \frac{\alpha}{2} c . \tag{13}
\end{equation*}
$$

Integrating equation (13) we have
$a=a_{0}(v) \quad b=-b_{0}(v) \operatorname{coth} \frac{\lambda u+\mu v}{2} \quad c=-c_{0}(v) \tanh \frac{\lambda u+\mu v}{2}$
where $a_{0}(v), b_{0}(v)$ and $c_{0}(v)$ are vector-valued functions of v.
Substituting equation (14) into the second part of the Lax pair (7), through complicated calculations we have

$$
\begin{equation*}
a_{0}^{\prime}(v)=-\frac{1}{2} b_{0}(v)+\frac{1}{2} c_{0}(v) \quad b_{0}^{\prime}(v)=-a_{0}(v) \quad c_{0}^{\prime}(v)=a_{0}(v) \tag{15}
\end{equation*}
$$

The general solutions of equation (15) are

$$
\begin{align*}
& a_{0}(v)=c_{1} \cosh v+c_{2} \sinh v \\
& b_{0}(v)=-c_{1} \sinh v-c_{2} \cosh v+c_{3} \tag{16}\\
& c_{0}(v)=c_{1} \sinh v+c_{2} \cosh v+c_{3}
\end{align*}
$$

where c_{1}, c_{2} and c_{3} are arbitrary constant vectors.
Let $v=0$ and $u \rightarrow-\infty$. From equations (14) and (16), we have

$$
\begin{equation*}
a_{0}(0)=c_{1} \quad b_{0}(0)=-c_{2}+c_{3} \quad c_{0}(0)=c_{2}+c_{3} . \tag{17}
\end{equation*}
$$

Considering equation (12) we have
$a_{0}(0)=-e_{2}^{0}+\mu e_{3}^{0} \quad b_{0}(0)=\lambda e_{1}^{0}-\mu e_{2}^{0}+e_{3}^{0} \quad c_{0}(0)=\lambda e_{1}^{0}+\mu e_{2}^{0}-e_{3}^{0}$
where $\left\{e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right\}$ form an orthonormal Lorentzian basis of M^{3}. From equation (12), we obtain the general solutions of the Lax pair (7)
$e_{1}=-\operatorname{coth} \xi e_{1}^{0}-\frac{1}{\lambda \sinh \xi}(\sinh v-\mu \cosh v) e_{2}^{0}-\frac{1}{\lambda \sinh \xi}(\cosh v-\mu \sinh v) e_{3}^{0}$
$e_{2}=-\frac{\mu}{\lambda \sinh \xi} e_{1}^{0}+\frac{1}{\lambda^{2}}(\cosh v-\mu \sinh v-\mu \operatorname{coth} \xi(\sinh v-\mu \cosh v)) e_{2}^{0}$

$$
\begin{equation*}
+\frac{1}{\lambda^{2}}(\sinh v-\mu \cosh v-\mu \operatorname{coth} \xi(\cosh v-\mu \sinh v)) e_{3}^{0} \tag{19}
\end{equation*}
$$

where $\xi=\lambda u+\mu v$.
Now we solve equation (1), i.e.

$$
\begin{equation*}
\mathrm{d} r=\left(l \cosh \frac{\alpha}{2}-m \sinh \frac{\alpha}{2}\right) \mathrm{d} u e_{1}+\left(l \sinh \frac{\alpha}{2}-m \cosh \frac{\alpha}{2}\right) \mathrm{d} v e_{2} . \tag{20}
\end{equation*}
$$

From

$$
\begin{equation*}
r_{u}=\left(l \cosh \frac{\alpha}{2}-m \sinh \frac{\alpha}{2}\right) e_{1} \tag{21}
\end{equation*}
$$

Figure 1. Space-like surfaces whose principal curvatures k_{1} and k_{2} satisfy $k_{1} k_{2}-\left(k_{1}+k_{2}\right)=1$.
and by using equations (10) and (19), we have

$$
\begin{align*}
& r=r_{0}(v)+\frac{1}{\lambda}\left(l(\xi-\operatorname{coth} \xi)+\frac{m}{\sinh \xi}\right) e_{1}^{0} \\
& \frac{1}{\lambda^{2}}\left(\frac{1}{\sinh \xi}(\mu \cosh v-\sinh v)+m(\sinh v-\mu \cosh v) \cot \xi\right) e_{2}^{0} \tag{22}\\
& \frac{1}{\lambda^{2}}\left(\frac{1}{\sinh \xi}(\mu \sinh v-\cosh v)+m(\cosh v-\mu \sinh v) \cot \xi\right) e_{3}^{0}
\end{align*}
$$

where $r_{0}(v)$ is a vector-valued function of v.
From

$$
\begin{equation*}
r_{v}=\left(l \sinh \frac{\alpha}{2}-m \cosh \frac{\alpha}{2}\right) e_{2} \tag{23}
\end{equation*}
$$

and by using equations (10) and (19), we have
$r_{0}^{\prime}(v)+\frac{l \mu}{\lambda} e_{1}^{0}+\frac{m \mu}{\lambda^{2}}(\sinh v-\mu \cosh v) e_{2}^{0}+\frac{m \mu}{\lambda^{2}}(\cosh v-\mu \sinh v) e_{3}^{0}=0$
therefore
$r_{0}(v)=-\frac{l \mu}{\lambda} v e_{1}^{0}-\frac{m \mu}{\lambda^{2}}(\cosh v-\mu \sinh v) e_{2}^{0}-\frac{m \mu}{\lambda^{2}}(\sinh v-\mu \cosh v) e_{3}^{0}$.
From equations (22) and (25), we obtain general solutions of equation (1)

$$
\begin{align*}
& r=\left(l u-\frac{l}{\lambda} \operatorname{coth} \xi+\frac{m}{\lambda \sinh \xi}\right) e_{1}^{0}+\left(-\frac{m \mu}{\lambda^{2}}(\cosh v-\mu \sinh v)\right. \\
&\left.-\frac{1}{\lambda^{2} \sinh \xi}(\sinh v-\mu \cosh v)+\frac{m}{\lambda^{2}}(\sinh v-\mu \cosh v) \operatorname{coth} \xi\right) e_{2}^{0} \\
&+\left(-\frac{m \mu}{\lambda^{2}}(\sinh v-\mu \cosh v)-\frac{1}{\lambda^{2} \sinh \xi}(\cosh v-\mu \sinh v)\right. \\
&\left.+\frac{m}{\lambda^{2}}(\cosh v-\mu \sinh v) \operatorname{coth} \xi\right) e_{3}^{0} . \tag{26}
\end{align*}
$$

Without loss of generality, we can choose an orthonormal Lorentzian basis of M^{3}

$$
\begin{equation*}
\left(\tilde{e}_{1}^{0}, \tilde{e}_{2}^{0}, \tilde{e}_{3}^{0}\right)=\left(e_{1}^{0}, \frac{1}{\lambda}\left(e_{2}^{0}-\mu e_{3}^{0}\right), \frac{1}{\lambda}\left(e_{3}^{0}-\mu e_{2}^{0}\right)\right) \tag{27}
\end{equation*}
$$

then we obtain a family of space-like surfaces with $k_{1} k_{2}-m\left(k_{1}+k_{2}\right)=1$ in M^{3}

$$
\begin{align*}
& x_{1}(u, v)=l u-\frac{l}{\lambda} \operatorname{coth}(\lambda u+\mu v)+\frac{m}{\lambda \sinh (\lambda u+\mu v)} \\
& S_{\lambda, m}:=\quad \tag{28}\\
& x_{2}(u, v)=-\frac{l \sinh v}{\lambda \sinh (\lambda u+\mu v)}-\frac{m \mu \cosh v}{\lambda}+\frac{m}{\lambda} \sinh v \operatorname{coth}(\lambda u+\mu v) \\
& x_{3}(u, v)=-\frac{l \cosh v}{\lambda \sinh (\lambda u+\mu v)}-\frac{m \mu \sinh v}{\lambda}+\frac{m}{\lambda} \cosh v \operatorname{coth}(\lambda u+\mu v)
\end{align*}
$$

where $\lambda^{2}+\mu^{2}=1$ and $l^{2}-m^{2}=1$.
If $l=1, m=0$, then $S_{\lambda, 0}$ are the space-like surfaces S_{λ} obtained in [1].
By using the software MAPLE, one can plot $S_{\lambda, \mu}$ for certain values of the parameters l, m, λ and μ. For example, the shape of $S_{1,1}$ is shown in figure $1(a)$ when $l=\sqrt{2}, m=$ $1, \lambda=1$ and $\mu=0$. The shape of $S_{\frac{\sqrt{2}}{2}, 1}$ is shown in figure $1(b)$ when we let $l=\sqrt{2}, m=1$ and $\lambda=\mu=\frac{\sqrt{2}}{2}$.

Acknowledgment

This work is supported by the National Natural Science Foundation of China through the grant no 10226037.

References

[1] Bobenko A I 1994 Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. Harmonic Maps and Integrable Systems (Braunschweig: Vieweg) pp 83-127
[2] Tian C and Cao X F 1997 Bäcklund transformations on surfaces with $a K+b H=c$ Chin. Ann. Math. 18A 529-38
[3] Wu H 1993 Weingarten surfaces and nonlinear partial differential equations Ann. Global Anal. Geom. 11 49-64
[4] Chern S S 1981 Geometrical interpretation of sinh-Gordon equation Ann. Pol. Math. 39 63-9
[5] Hu H S 1985 The construction of hyperbolic surfaces in three-dimensional Minkowski space and sinh-Laplace equation Acta Math. Sin. 179-86

