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Abstract
From solutions of the sinh-Laplace equation, we construct a family of space-
like surfaces with k1k2 − m(k1 + k2) = 1 in Minkowski three-space, where k1

and k2 are principal curvatures and m is an arbitrary constant.

PACS numbers: 02.40.Vh, 02.30.Ik

From the point of view of soliton theory, for a surface in three-dimensional spaces, the Gauss–
Weingarten formulae are a Lax pair of Gauss–Codazzi equations [1]. However, the Gauss–
Codazzi equations have been obtained in [2] and [3] for any Weingarten surfaces, i.e., surfaces
for which the principal curvatures k1 and k2 satisfy a functional relationship f (k1, k2) = 0. So,
in theory, from a solution of the Gauss–Codazzi equations, by solving the Gauss–Weingarten
formulae, one can construct a Weingarten surface whose principal curvatures k1 and k2 satisfy
the given relationship f (k1, k2) = 0. But, in practice, for an arbitrary function f (k1, k2) = 0,
the Gauss–Codazzi equations are nonlinear, and are, in general, difficult to solve. Even if a
solution of the Gauss–Codazzi equations is given, one still faces the technical challenge of
solving the Gauss–Codazzi formulae. For constant negative curvature space-like surfaces (i.e.
k1k2 = 1) in Minkowski three-space M3, the Gauss–Codazzi equation is the sinh-Laplace
equation [4]. From solutions of the sinh-Laplace equation, Hu [5] has constructed a family of
constant negative curvature space-like surfaces in M3. In this paper, we first point out that for
Weingarten space-like surfaces with k1k2 − m(k1 + k2) = 1 (m is an arbitrary constant) in M3,
the Gauss–Codazzi equation is still the sinh-Laplace equation. Then, by solving the Gauss–
Weingarten formulae, we construct a family of space-like surfaces with k1k2 −m(k1 +k2) = 1,
which are a generalization of surfaces obtained in [5]. We suppose that the surfaces discussed
in this paper do not contain any umbilic points.

Let S be a space-like surface with k1k2 − m(k1 + k2) = 1, or equivalently,
(k1 − m)(k2 − m) = l2(l2 − m2 = 1). Let {r; e1, e2, e3} be an orthonormal Lorentzian
frame field on S such that e1, e2 are tangent vector fields in the principal directions, and e3 is
the normal vector field

(
e2

1 = e2
2 = −e2

3 = 1
)
. Then we have the moving equations

dr = ω1e1 + ω2e2 (1)
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dei =
3∑

j=1

ωijej i = 1, 2, 3 (2)

where ω12 = −ω21, ω13 = ω31, ω23 = ω32.
Suppose the first and second fundamental forms of S are respectively

I = a2 du2 + b2 dv2 II = k1a
2 du2 + k2b

2 dv2 (a, b > 0)

then we have

ω1 = a du ω2 = b dv ω13 = ω31 = −k1a du
(3)

ω23 = ω32 = −k2b dv ω12 = −ω21 = −av

b
du +

bu

a
dv

and the Codazzi equations

(k1 − k2)av + k1va = 0 (k2 − k1)bu + k2ub = 0. (4)

Since (k1 − m)(k2 − m) = l2 (l2 − m2 = 1), we can assume that

k1 − m = l
l sinh α

2 − m cosh α
2

l cosh α
2 − m sinh α

2

k2 − m = l
l cosh α

2 − m sinh α
2

l sinh α
2 − m cosh α

2

. (5)

Then, using the Codazzi equations, we can choose parameters u and v such that

a = l cosh
α

2
− m sinh

α

2
b = l sinh

α

2
− m cosh

α

2
.

Hence

ω1 =
(
l cosh

α

2
− m sinh

α

2

)
du ω2 =

(
l sinh

α

2
− m cosh

α

2

)
dv

ω12 = −ω21 = −αv

2
du +

αu

2
dv

ω13 = ω31 = sinh
α

2
du ω23 = ω32 = cosh

α

2
dv.

(6)

From equation (6), equation (2) can be rewritten as
e1

e2

e3




u

=

 0 − 1

2αv sinh α
2

1
2αv 0 0

sinh α
2 0 0





e1

e2

e3





e1

e2

e3




v

=

 0 1

2αu 0
− 1

2αu 0 cosh α
2

0 cosh α
2 0





e1

e2

e3


 .

(7)

The Gauss equation is the sinh-Laplace equation

αuu + αvv = sinh α (8)

and equation (7) are a Lax pair of equation (8).
The sinh-Laplace equation (8) has the following solutions

α = 2 sinh−1

(
− 1

sinh(λu + µv)

)
(9)

where λ and µ are constants and satisfy λ2 + µ2 = 1, λ > 0, λu + µv < 0. Then

sinh
α

2
= − 1

sinh(λu + µv)
cosh

α

2
= −cosh(λu + µv)

sinh(λu + µv)
. (10)
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Now the first part of the Lax pair (7) can be written as

e1u = −µ sinh
α

2
e2 + sinh

α

2
e3 e2u = µ sinh

α

2
e1 e3u = sinh

α

2
e1. (11)

Letting

a = −e2 + µe3 b = λe1 − µe2 + e3 c = λe1 + µe2 − e3 (12)

then equation (11) is equivalent to

au = 0 bu = λ sinh
α

2
b cu = −λ sinh

α

2
c. (13)

Integrating equation (13) we have

a = a0(v) b = −b0(v) coth
λu + µv

2
c = −c0(v) tanh

λu + µv

2
(14)

where a0(v), b0(v) and c0(v) are vector-valued functions of v.
Substituting equation (14) into the second part of the Lax pair (7), through complicated

calculations we have

a′
0(v) = − 1

2b0(v) + 1
2c0(v) b′

0(v) = −a0(v) c′
0(v) = a0(v). (15)

The general solutions of equation (15) are

a0(v) = c1 cosh v + c2 sinh v

b0(v) = −c1 sinh v − c2 cosh v + c3 (16)

c0(v) = c1 sinh v + c2 cosh v + c3

where c1, c2 and c3 are arbitrary constant vectors.
Let v = 0 and u → −∞. From equations (14) and (16), we have

a0(0) = c1 b0(0) = −c2 + c3 c0(0) = c2 + c3. (17)

Considering equation (12) we have

a0(0) = −e0
2 + µe0

3 b0(0) = λe0
1 − µe0

2 + e0
3 c0(0) = λe0

1 + µe0
2 − e0

3 (18)

where
{
e0

1, e
0
2, e

0
3

}
form an orthonormal Lorentzian basis of M3. From equation (12), we

obtain the general solutions of the Lax pair (7)

e1 = − coth ξe0
1 − 1

λ sinh ξ
(sinh v − µ cosh v)e0

2 − 1

λ sinh ξ
(cosh v − µ sinh v)e0

3

e2 = − µ

λ sinh ξ
e0

1 +
1

λ2
(cosh v − µ sinh v − µ coth ξ(sinh v − µ cosh v))e0

2 (19)

+
1

λ2
(sinh v − µ cosh v − µ coth ξ(cosh v − µ sinh v)) e0

3

where ξ = λu + µv.
Now we solve equation (1), i.e.

dr =
(
l cosh

α

2
− m sinh

α

2

)
du e1 +

(
l sinh

α

2
− m cosh

α

2

)
dv e2. (20)

From

ru =
(
l cosh

α

2
− m sinh

α

2

)
e1 (21)
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Figure 1. Space-like surfaces whose principal curvatures k1 and k2 satisfy k1k2 − (k1 + k2) = 1.

and by using equations (10) and (19), we have

r = r0(v) +
1

λ

(
l(ξ − coth ξ) +

m

sinh ξ

)
e0

1

1

λ2

(
1

sinh ξ
(µ cosh v − sinh v) + m(sinh v − µ cosh v) cot ξ

)
e0

2 (22)

1

λ2

(
1

sinh ξ
(µ sinh v − cosh v) + m(cosh v − µ sinh v) cot ξ

)
e0

3

where r0(v) is a vector-valued function of v.
From

rv =
(
l sinh

α

2
− m cosh

α

2

)
e2 (23)

and by using equations (10) and (19), we have

r ′
0(v) +

lµ

λ
e0

1 +
mµ

λ2
(sinh v − µ cosh v)e0

2 +
mµ

λ2
(cosh v − µ sinh v)e0

3 = 0 (24)

therefore

r0(v) = − lµ

λ
ve0

1 − mµ

λ2
(cosh v − µ sinh v)e0

2 − mµ

λ2
(sinh v − µ cosh v)e0

3. (25)

From equations (22) and (25), we obtain general solutions of equation (1)

r =
(

lu − l

λ
coth ξ +

m

λ sinh ξ

)
e0

1 +
(
−mµ

λ2
(cosh v − µ sinh v)

− 1

λ2 sinh ξ
(sinh v − µ cosh v) +

m

λ2
(sinh v − µ cosh v) coth ξ

)
e0

2

+

(
−mµ

λ2
(sinh v − µ cosh v) − 1

λ2 sinh ξ
(cosh v − µ sinh v)

+
m

λ2
(cosh v − µ sinh v) coth ξ

)
e0

3. (26)
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Without loss of generality, we can choose an orthonormal Lorentzian basis of M3

(
ẽ0

1, ẽ
0
2, ẽ

0
3

) =
(

e0
1,

1

λ

(
e0

2 − µe0
3

)
,

1

λ

(
e0

3 − µe0
2

))
(27)

then we obtain a family of space-like surfaces with k1k2 − m(k1 + k2) = 1 in M3

x1(u, v) = lu − l

λ
coth(λu + µv) +

m

λ sinh(λu + µv)

Sλ,m := x2(u, v) = − l sinh v

λ sinh(λu + µv)
− mµ cosh v

λ
+

m

λ
sinh v coth(λu + µv) (28)

x3(u, v) = − l cosh v

λ sinh(λu + µv)
− mµ sinh v

λ
+

m

λ
cosh v coth(λu + µv)

where λ2 + µ2 = 1 and l2 − m2 = 1.
If l = 1,m = 0, then Sλ,0 are the space-like surfaces Sλ obtained in [1].
By using the software MAPLE, one can plot Sλ,µ for certain values of the parameters

l,m, λ and µ. For example, the shape of S1,1 is shown in figure 1(a) when l = √
2,m =

1, λ = 1 and µ = 0. The shape of S√
2

2 ,1 is shown in figure 1(b) when we let l = √
2,m = 1

and λ = µ =
√

2
2 .
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